Nonparametric Forecasting of Multivariate Probability Density Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions

Estimation of probability density functions (pdf) is one major topic in pattern recognition. Parametric techniques rely on an arbitrary assumption on the form of the underlying, unknown distribution. Nonparametric techniques remove this assumption In particular, the Parzen Window (PW) relies on a combination of local window functions centered in the patterns of a training sample. Although effec...

متن کامل

Multivariate Nonparametric Volatility Density Estimation

We consider a continuous-time stochastic volatility model. The model contains a stationary volatility process, the multivariate density of the finite dimensional distributions of which we aim to estimate. We assume that we observe the process at discrete instants in time. The sampling times will be equidistant with vanishing distance. A multivariate Fourier-type deconvolution kernel density est...

متن کامل

Nonparametric Estimation of Partial Derivatives of a Multivariate Probability Density by the Method of Wavelets

A method of estimation of the partial derivatives of a multivariate probability density using wavelet systems is proposed. Rates for the almost sure convergence of these estimators are investigated.

متن کامل

On the Concavity of Multivariate Probability Distribution Functions on the Concavity of Multivariate Probability Distribution Functions

We prove that the multivariate standard normal probability distribution function is concave for large argument values. The method of proof allows for the derivation of similar statements for other types of multivariate probability distribution functions too. The result has important application, e.g., in probabilistic constrained stochastic programming problems.

متن کامل

Nonparametric multivariate density estimation: a comparative study

This paper algorithmically and empirically studies two major types of nonparametric multivariate density estimation techniques, where no assumption is made about the data being drawn from any of known parametric families of distribution. The first type is the popular kernel method (and several of its variants) which uses locally tuned radial basis (e.g., Gaussian) functions to interpolate the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2018

ISSN: 1556-5068

DOI: 10.2139/ssrn.3192342